Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
The enhancement and eastward expansion of climate warming and humidification, formation mechanism and important environmental impacts in Northwest China
ZHANG Qiang, YANG Jinhu, MA Pengli, YUE Ping, YU Haipeng, YANG Zesu, WANG Pengling, DUAN Xinyu, LIU Xiaoyun, ZHU Biao, ZHANG Hongli, LU Guoyang, WANG Youheng, LIU Weiping, LIN Jinjin, LIU Liwei, YAN Xinyang
Journal of Arid Meteorology    2023, 41 (3): 351-358.   DOI: 10.11755/j.issn.1006-7639(2023)-03-0351
Abstract435)   HTML21)    PDF(pc) (9211KB)(1071)       Save

The northwest region of China is located in the hinterland of Eurasia, in which the source of water vapor is scarce, and drought is its main climatic feature. In recent years, with the continuous increase of regional precipitation, the warming and wetting in Northwest China has attracted great attention from all walks of life. In order to scientifically respond to social concerns, the team used multi-source data to conduct in-depth research on the phenomenon of warming and wetting in Northwest China from multi-scale and multi-dimensional perspectives, and found that the trend of wetting in Northwest China had significant and nonlinear enhancement characteristics. It is recognized that the wetting in Northwest China is expanding eastward, and the land surface evapotranspiration there has a special negative feedback mechanism on climate warming. It is estimated that the warming and wetting trend will still maintain in Northwest China in this century, and the wetting trend is driven by multi-factor comprehensive driving mechanism. The multi-aspect impacts of the warming and wetting in Northwest China are evaluated, and the technical countermeasures to deal with the warming and wetting there are put forward, and the research results of “the enhancement and eastward expansion of climate warming and humidification, formation mechanism and important environmental impacts in Northwest China” are formed. The major consultation report based on the research results has played an important decision-making support for the national strategies such as the development of the western region in the new era and the ecological protection and high-quality development of the Yellow River Basin. The research results were selected as “China's Top Ten Scientific and Technological Progress in Ecological Environment” in 2022, and have also received extensive attention from the international academic communities.

Table and Figures | Reference | Related Articles | Metrics
Normal Distribution Characteristics of Precipitation in Lanzhou Region
BAI Bing,LU Dengrong,CHEN Xuejun,HAN Haitao,WANG Youheng
Journal of Arid Meteorology    DOI: 10.11755/j.issn.1006-7639(2014)-01-0123